Newborn Screening for Pompe Disease in New York State: Outcomes and the Role of Long-term Follow-up
Beth Vogel, MS, CGC
Pilot Main Objectives

1. Validate and implement screening for Pompe disease
2. Determine confirmatory tests and procedures for out-of-range results
3. Perform short-term follow-up and track positive cases
4. Begin a mechanism to ensure individuals who are confirmed with Pompe disease are followed long-term to assess natural history and treatment outcomes
NYS NBS Pompe Advisory Committee

Priya Kishnani
Usha Krishnan
David Kronn
Melissa Wasserstein
Patrick Hopkins
Deeksha Bali
Sarah Young
Chunli Yu
Main Objectives

1. Validate and implement screening for Pompe disease
 October 1, 2014 to May 25, 2016
2. Determine confirmatory tests and procedures for out-of-range results
3. Perform short-term follow-up and track positive cases
4. Begin a mechanism to ensure individuals who are confirmed with Pompe disease are followed long-term to assess natural history and treatment outcomes
Cutoffs and Testing Algorithm

All specimens tested for Enzyme activity

< 20% of daily mean

Retested in duplicate (or more)

Average of 3 samples ≤ 15% (GAA/IDUA)

DNA testing GAA

1 or more mutations

Screen Positive Referral

Average of 3 samples > 15% (GAA/IDUA)

No mutations

Screen negative

364,555 Infants

Slide from J. Orsini

67 infants
Main Objectives

1. Validate and implement screening for Pompe disease
2. Determine confirmatory tests and procedures for out-of-range results
3. Perform short-term follow-up and track positive cases
4. Begin a mechanism to ensure individuals who are confirmed with Pompe disease are followed long-term to assess natural history and treatment outcomes
Special considerations:
- If clinical symptoms are present, infant should be evaluated for Pompe disease regardless of mutation status
- Cardiac evaluation should include a minimum of an echo and EKG
Pompe Disease Management Recommendations

1. Recommendations for Determining Cross Reactive Immunologic Material (CRIM) Status
2. Recommendations & Considerations for Initiating ERT
3. Table 1. Evaluations for Monitoring of Asymptomatic Patients with Pompe Disease
4. Table 2. Evaluations for Monitoring of Symptomatic Individuals with Pompe Disease
Main Objectives

1. Validate and implement screening for Pompe disease
2. Determine confirmatory tests and procedures for out-of-range results
3. Perform short-term follow-up and track positive cases
4. Begin a mechanism to ensure individuals who are confirmed with Pompe disease are followed long-term to assess natural history and treatment outcomes
<table>
<thead>
<tr>
<th>Classification</th>
<th>GAA Mutation Analysis</th>
<th>Number of infants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infantile-onset Pompe</td>
<td>2 variants + symptoms</td>
<td>2</td>
</tr>
<tr>
<td>Probable Late-onset Pompe</td>
<td>2 known pathogenic variants</td>
<td>12</td>
</tr>
<tr>
<td>Possible Late-onset Pompe</td>
<td>1 known pathogenic variant + 1 VOUS</td>
<td>12</td>
</tr>
<tr>
<td>Uncertain significance</td>
<td>2 VOUS</td>
<td>7</td>
</tr>
<tr>
<td>Carrier</td>
<td>1 known pathogenic mutation or 1 VOUS</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>1 known pathogenic mutation or 1 VOUS + pseudodeficiency allele(s)</td>
<td>21</td>
</tr>
</tbody>
</table>
Main Objectives

1. Validate and implement screening for Pompe disease
2. Determine confirmatory tests and procedures for out-of-range results
3. Perform short-term follow-up and track positive cases
4. Begin a mechanism to ensure individuals who are confirmed with Pompe disease are followed long-term to assess natural history and treatment outcomes
Role of Long-term Follow-up

<table>
<thead>
<tr>
<th>Classification</th>
<th>GAA Mutation Analysis</th>
<th>Number of infants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infantile-onset Pompe</td>
<td>2 variants + symptoms</td>
<td>2</td>
</tr>
<tr>
<td>Probable Late-onset Pompe</td>
<td>2 known pathogenic variants</td>
<td>12</td>
</tr>
<tr>
<td>Possible Late-onset Pompe</td>
<td>1 known pathogenic variant + 1 VOUS</td>
<td>12</td>
</tr>
<tr>
<td>Uncertain significance</td>
<td>2 VOUS</td>
<td>7</td>
</tr>
<tr>
<td>Carrier</td>
<td>1 known pathogenic mutation or 1 VOUS</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>1 known pathogenic mutation or 1 VOUS + pseudodeficiency allele(s)</td>
<td>21</td>
</tr>
</tbody>
</table>
Role of Long-term Follow-up

• Public health Implications
 – Calculating positive predictive value
 – Without LTFU - assume all potential LOPD cases will develop symptoms
Role of Long-term Follow-up

- Clinical Implications
 - Variants of unknown significance
 - Decisions on monitoring and treatment
Variants of Unknown Significance

- p.V222M variant - 7 referrals
- 2 infants were homozygous
 - diagnostic GAA enzyme analysis: low GAA enzyme activity, but slightly above the late-onset disease range
 - The Erasmus MC GAA mutation database: variant is non-pathogenic
 - based on in vitro studies of GAA enzyme activity using site-directed mutagenesis and transient expression in cell lines (Kroos et al., 2012).
- Long-term follow-up to determine whether this variant is pathogenic or a pseudodeficiency allele
Case Study: Zoe

- Abnormal screen reported at 7 DOL
- GAA activity – 6.2%
- Genotype: Late onset / Infantile
- Diagnostic GAA results: 15.0 (Range: 67.7-706.4)
- Pediatrician and metabolic specialist: No symptoms noticed; cardiac evaluation normal
- Physical therapist (specializing in neuromuscular disorders): Some subtle delay identified
- What’s next for Zoe?
Case Study: Megumi

• Abnormal screen reported at 10 DOL
• GAA activity – 9.2%
• Genotype: Late onset / Variant of unknown significance + pseudo deficiency allele
• Diagnostic GAA results:
 • 3.8 (Range: 67.7-706.4)
 • 1.7 (Range: > 3.88)
• No symptoms; cardiac evaluation normal at of 6 months of age
• What’s next for Megumi?
Long-term Follow-up Process

- Identify Data Elements
- IRB approval and data collection tool
- Consent and data collection
NBSTRN Resources

Identify data elements – List developed by panel of experts led by NBSTRN

Data collection tool – Longitudinal Pediatric Data Resource
Status of LTFU for Pompe in NYS

- IRB approval from NYS DOH
- Working through IRB at each institution (9)
Barriers to LTFU Implementation

• IRB approval – Multi-site study
• Consent
• Data collection
Acknowledgements

NYS NBS Program
• Michele Caggana
• Joseph Orsini
• Erin Hughes
• Colleen Stevens
• Sarah Bradley

NYS NBS Pompe Advisory Committee
• Priya Kishnani
• Usha Krishnan
• David Kronn
• Melissa Wasserstein
• Patrick Hopkins
• Deeksha Bali
• Sarah Young
• Chunli Yu
Thank you